One-dimensional correlations in ordered smectic phases of comb-like polymers

V. V. Tsukruk* and V. V. Shilov

The Institute of Macromolecular Chemistry, Academy of Sciences, Ukrainian SSR, Kiev, 252160, USSR (Received 21 February 1989; revised 2 November 1989; accepted 2 November 1989)

The one-dimensional ordering of the ordered tilted (F) and normal (B) smectic phases of comb-like polymers is discussed. The one-dimensional correlation functions are calculated and the damping behaviour of one-dimensional correlations is characterized. The density distribution profiles along the normal to the plane of a smectic layer are determined. Finally, the variations of one-dimensional ordering during tilted-normal smectic phase transitions are examined.

(Keywords: smectic polymers; correlation functions; phase transition)

INTRODUCTION

During recent years our knowledge of possible polymorphism in macromolecular liquid-crystalline (LC) systems has become far more extensive. Ordinary smectics and nematics as well as polymers with ordered smectic phases having a two-dimensional lattice of B, F or H types were described earlier¹⁻⁵. The structural data for such mesophases are confined, as a rule, only to the type of molecular packing.

In our previous studies^{6,7}, we examined the schemes of phase transitions for a number of acrylate and methacrylate polymers with ordered-disordered and tilted-normal smectic phase transitions (*Table 1*). For these systems, models of molecular packing were proposed and the variations of structural characteristics of intralayer packing during two-dimensional melting of a smectic phase were discussed. In this work, we present the results of further investigations of one-dimensional ordering in these systems, proceeding from the analysis of the correlation functions $\gamma_1(x)$ calculated from smallangle X-ray scattering (SAXS) intensity data.

EXPERIMENTAL

The SAXS data were obtained in an automatic DRAM-2.0 diffractometer with step-by-step scanning according to a conventional scheme⁸. The data were processed using FFSAXS program⁹ and included the following procedures: subtraction of instrument background; subtraction of wide-angle X-ray scattering (WAXS) background; smoothing of scattering data; introduction of collimation corrections for the height of the primary beam; calculation of transition layer thicknesses; calculation of the one-dimensional correlation functions $\gamma_1(x)$ by the Fourier cosine transformation of the intensity data, taking account of the Lorentz factor (the use of the one-dimensional intensity function)¹⁰:

$$\gamma_1(x) = \int s^2 I(s) \cos(sx) \, \mathrm{d}s$$

0032-3861/90/091793-04 © 1990 Butterworth-Heinemann Ltd. where $s = 2 \sin \theta / \lambda$, θ is the scattering angle and λ is the wavelength.

The electron density distribution profiles along the normal to the plane of a smectic layer, $\rho(x)$, were obtained by graphic self-convolution of model profiles according to a procedure described in ref. 1.

RESULTS AND DISCUSSION

The one-dimensional correlation functions $\gamma_1(x)$ for all polymers under investigation are given in Figure 1. As can be seen, they are oscillating, gradually damping functions, showing a complex pattern of the electron density distribution $\rho(x)$. A special feature of correlation functions is the modulation of gradually damping maxima by a more complex function. Thus the final shape deviates considerably from the simple sinusoidal one characteristic of two-level lamellar systems¹⁰. The damping of $\gamma_1(x)$ for all the polymers occurs at distances L = 600-800 Å, which include 15-20 smectic layers (Table 2). There is no great difference in the values of L for tilted (F) and normal (B) smectic phases. To evaluate the damping of one-dimensional correlations and to calculate the corresponding longitudinal correlation lengths ξ_{\parallel} , the logarithms of the envelope curves of $\gamma_1(x)$ were plotted against distance x (Figure 2). As can be seen, over practically the whole range of distances x the ln γ_1 plots are well approximated by straight lines, which corresponds to the realization of the rapid exponential law of Debye correlation damping: $\gamma_1 \sim \exp(-x/\xi_{\parallel})^{10}$. The change in the slope of $\ln \gamma_1$ plots for polymers P4A and P7M can be associated with several types of layered packing having different scales of longitudinal correlations^{6,7}. In refs. 6 and 7, the independent layer packing of the mesogenic groups, as in P4A and P7M, was shown. Thus, the ordered smectic phases are characterized by a high level of defects determining a rapid damping of one-dimensional correlations. In these systems, the exponential damping of correlations is observed, as opposed to the slower power one characteristic of low-molecular-weight smectic phases¹¹. Small absolute values of the longitudinal correlation lengths ξ_{\parallel} obtained from the Debye approximation are in the range 200-300 Å, which also provides evidence of a high level

^{*} Present address: Fach. Chem. Phys., Universitat Marburg, D-3550, Marburg, FRG

Table 1Polymer characteristics

Polymer	Structure of monomer unit	Scheme of phase transitions (°C)	Refs.
~	\mathcal{O} CH ₂ -C(R) \mathcal{O} CH ₂		
P4A	R = H, n = 4	$S_B \xrightarrow{66} S_A \xrightarrow{122} I_{120}$	6
P4M	$R = CH_3, n = 4$	$S_F \xrightarrow{-79} S_C \xrightarrow{-133} S_A \longrightarrow I$	6
P/A D7M	$\mathbf{K} = \mathbf{H}, n = 7$	$S_B \xrightarrow[80]{80} S_A \xrightarrow[139]{139} I$	7
P7A P7M	R = H, n = 7 $R = CH_3, n = 7$	$S_{\rm B} \xrightarrow[80]{80} S_{\rm A} \xrightarrow[139]{139} I$	

Table 2 Structural characteristics of smectic polymers

Polymer	Phase	<i>T</i> (°C)	d (Å) ^a	L (Å) ^b	ξ _{II}	l_1 (Å)	l ₂ (Å)	E (Å)
P7A		25	68	600	220	_	_	_
P7M	SF	25	59	600	260, 80	_	_	_
P4A	S _P	25	41	650	240, 55	10	8	3
P4M	SF	25	32	800	270	8	7	3
	$S_{c} + S_{A}$	60	33	520	180	-	-	-
	S	65	38	580	210	_	-	_
	S.	71	38	350	130	-	-	-
	S,	80	38	350	120	-	-	_

" Periodicity of the main order

^b Determined from $\gamma_1(x) \rightarrow 0$

Figure 1 One-dimensional correlation functions: A, P4A; B, P4M; C, P7A; D, P7M

values are lower by 1-2 orders than in low-molecular-weight smectics¹¹.

The analysis of $\gamma_1(x)$ near zero and the first maximum makes it possible to come to certain conclusions on the

Figure 2 Logarithmic plots of envelope curves of one-dimensional correlation functions: A, P4A; B, P4M; C, P7A; D, P7M

of defects of one-dimensional order (*Table 2*). These density distribution $\rho(x)$ and to verify the models of molecular packing proposed earlier for those systems^{6,7}. The first, most intensive peak on $\rho(x)$ represents the periodicity of the main structural order in the system, while the additional features present near the first minimum of $\gamma_1(x)$ are associated with a complex density modulation within this main order¹. A simple sinusoidal shape of $\gamma_1(x)$ is indicative of two alternating interlayers with different electron densities. Additional interlayers within the layered structure results in an intermediate peak on $\gamma_1(x)$.

The 41 Å period is the main order for the acrylate

polymer P4A of smectic B type, which does not correspond to a simple one-layered packing proposed earlier based on the position of small-angle maxima⁶. In the methacrylate analogue P4M of smectic F type, the value of $d_1 = 32$ Å (Figure 1). An intermediate maximum on $\gamma_1(x)$ in the range 16–21 Å provides evidence of the realization of a more complex, three-level density distribution, with the formation of separate microregions containing rigid nuclei of mesogenic groups, flexible fragments and polymer main chains¹. If we compare the profiles of $\rho(x)$ calculated from $\gamma_1(x)$ for the acrylate and methacrylate polymers, they appear to be quite similar (*Figure 3*). The differences refer to special features of $\rho(x)$ and consist of the following. For P4M the length of regions with higher electron density is much shorter and a lower density at the 'ends' of $\rho(x)$, absent for P4A, is quite evident (Table 2). The evaluation of different longitudinal arrangements of mesogenic fragments, taking account of the profiles $\rho(x)$ for the normal (P4A) and tilted (P4M) structures, demonstrates that for the acrylate polymer packing with overlap of rigid nuclei of mesogenic groups is realized (Figure 3). The length l of regions of higher density is 10 Å, which agrees with the longitudinal size of normally arranged phenylbenzoate groups. As can be seen in Figure 3, the 37 Å period corresponds to the distance between neighbouring regions of packing of rigid (l_1) fragments within the two-layered structures and not within the one-layered packing, as was hypothesized in ref. 6. The length of packing regions of main chains is 8 Å, i.e. they also include several nearest attachment groups. Such thicknesses of main-chain packing interlayers are characteristic of smectic comb-like polymers with rather long flexible (l_2) spacers¹². Between the regions of different density, 3 Å long transition layers exist, which are somewhat shorter than those in disordered smectic polymers $(5-8 \text{ Å})^{13}$. The thickness of gradient zones between regions with different densities ρ_1 and ρ_2 is given by E.

The profile for the methacrylate analogue with a tilted smectic F phase corresponds to an ordinary tilted twolayered packing, as was mentioned earlier⁷. In this case the repeat period is 64 Å, and the length of packing

Figure 3 Profiles of the density distribution $\rho(x)$ and the corresponding schemes of molecular chain arrangements: A, P4A; B, P4M

Figure 4 SAXS curves for P4M at different temperatures: A, 25°C; B, 60°C; C, 65°C; D, 71°C; E, 80°C

regions of rigid nuclei of mesogenic groups decrease to 6 Å, which agrees with the projection of a mesogenic group with account taken of the tilt angle ($\varphi = 36^{\circ}$)⁷. A local density decrease in the region of contacts of chain ends of mesogenic fragments is distinctly represented on $\rho(x)$; transition layer thicknesses are also 3 Å (*Table 2*).

For the polymers P7A and P7M, a much more complex profile of $\gamma_1(x)$ is observed in this region. Here two additional maxima are present, and $\gamma_1(x)$ exhibits a complex modulated shape (*Figure 1*). The periodicity of the main order is 68 and 59 Å for P7A and P7M, respectively, which corresponds to the normal and tilted two-layered packings proposed earlier⁷. The complex shape of $\gamma_1(x)$ is probably associated with the realization of a density distribution profile that is more complex than three-level, or with the coexistence of two quite similar types of molecular packing.

In the methacrylate polymer P4M, according to ref. 6, a rather complex scheme of polymorphic transformations is realized, which includes ordered-disordered smectic phase (smectic F-smectic C) transitions and tilted-normal smectic phase (smectic C-smectic A) transitions (*Table 1*). To evaluate the changes in one-dimensional correlations as a result of phase transitions, we obtained a set of small-angle curves and correlation functions $\gamma_1(x)$ in the range of transition temperatures (*Figures 4* and 5). As can be seen, up to 60°C the scattering curves still have a peak of lower intensity corresponding to the tilted packing $(2\theta = 2.98^\circ)$. Near this peak a new one appears corresponding to the normal packing $(2\theta = 2.18^\circ)$. In a certain temperature interval (from 57 to 64° C) both

Figure 5 One-dimensional correlation functions for P4M at different temperatures: A, 60°C; B, 65°C; C, 71°C; D, 80°C

Figure 6 Small-angle maxima intensities as a function of temperature for P4M in the region of the smectic C-smectic A phase transition: A, corresponds to the S_C phase intensity; B, intensity of the S_A phase maximum (arrows show the S_F-S_C and S_C-S_A phase transitions)

maxima coexist (Figure 6), which provides evidence of a two-phase region in a polymer where the tilted and normal smectic phases coexist. On the corresponding correlation functions $\gamma_1(x)$, two density waves of different periodicity overlap one another distinctly in this temperature interval. The perfection of one-dimensional order also decreases greatly (decrease of ξ_{\parallel} and L) (Table 2). A further temperature increase above 65°C and a

complete transition to the normal smectic A phase result in a 'single-period' correlation function $(d_1 = 38 \text{ Å})$, damping at much shorter distances (ξ_{\parallel} decreases to 120–130 Å) (*Table 2*). As follows from the analysis of $\gamma_1(x)$, for small x, the three-level shape of the density distribution profile $\rho(x)$ is also preserved for the smectic A phase.

CONCLUSIONS

The above studies on a number of ordered smectic phases of comb-like polymers enable one to conclude that they are characterized by a high level of defects of onedimensional order manifesting itself in a rapid exponential damping of one-dimensional correlations and in small absolute values of the longitudinal correlation lengths ξ_{\parallel} (200-300 Å). As we demonstrated earlier, this is associated with additional disturbances introduced by an irregularly packed polymer main chain to the packing of mesogenic groups¹⁴. For a comb-like polymer the perfection of one-dimensional order is much higher in the ordered smectic phase than in the disordered one (longitudinal correlation lengths ξ_{\parallel} are twice as high). In polymers with long flexible spacers between mesogenic groups and main chains, a complex three-level profile of the density distribution $\rho(x)$ is realized. Microregions of different electron densities are formed from separately packed rigid nuclei of mesogenic groups, flexible fragments and polymer main chains. The latter, as was shown in other work¹²⁻¹⁴, is a result of microphase separation of different macromolecular fragments because of their thermodynamic incompatibility. In the region of the tilted-normal smectic phase transition, a two-phase region of coexistence of two smectic structures was revealed.

ACKNOWLEDGEMENTS

We are indebted to Professor V. P. Shibaev and Dr M. V. Kozlovsky (Moscow State University) for polymer samples, experimental assistance and helpful discussions.

REFERENCES

- 1 'Polymer Liquid Crystals' (Ed. N. A. Plate), Khimiya, Moscow, 1988
- Tsukruk, V. V. and Shilov, V. V. 'The Structure of Polymer 2 Liquid Crystals', Naukova Dumka, Kiev, 1989
- 3 Tsukruk, V. V., Shilov, V. V., Lipatov, Yu. S., Mogilevsky, L. Yu., Freidzon, Ya. S., Boiko, N. I. and Shibaev, V. P. Crystallography (USSR) 1988, 33, 485
- Shibaev, V. P. and Plate, N. A. Adv. Polym. Sci. 1984, 60/61, 175 4
- 5 Freidzon, Ya. S., Boiko, N. I., Shibaev, V. P., et al. Polym. Commun. 1986, 26, 647
- 6 Tsukruk, V. V., Kozlovsky, M. V., Shibaev, V. P., Shilov, V. V. and Lipatov, Yu. S. Vysokomol. Soed. (A) 1987, 29, 2630
- 7 Tsukruk, V. V., Kozlovsky, M. V., Shibaev, V. P. and Shilov, V. V. Crystallography (USSR) 1988, 33, 721
- Lipatov, Yu. S., Shilov, V. V., Gomza, Yu. P. and Kruglyak, 8 N. E. 'X-Ray Studies of Polymer Systems', Naukova Dumka, Kiev, 1982
- Q
- Vonk, C. G. J. Appl. Crystallogr. 1973, 8, 340 Feigin, L. A. and Svergun, D. I. 'Small-Angle X-Ray and 10 Neutron Scattering', Nauka, Moscow, 1986
- 11
- De Vries, A. Mol. Cryst. Liq. Cryst. 1985, 131, 125 Tsukruk, V. V., Shilov, V. V. and Lipatov, Yu. S. Macro-12 molecules 1986, 19, 1308
- Tsukruk, V. V., Shilov, V. V., Lokhonya, O. A. and Lipatov, 13 Yu. S. Crystallography (USSR) 1987, 32, 157
- 14 Tsukruk, V. V., Shilov, V. V. and Lipatov, Yu. S. Acta Polym. 1985, 36, 403